DEPARTMENT OF MATHEMATICS

Semester : VII

Integrated M.Sc. Mathematics

Academic Year : 2019-20
Subject: 060090107 GE1Principles of Scientific Computing

Teaching Schedule

Course Objectives: To give comprehensive knowledge of Octave programming language and its implementation in scientific problem solving techniques.
Course Outcomes: Upon completion of the course, students shall be able to
CO1: understand the basic concepts of mathematical computer programming.
CO2: become familiar with syntax related to concepts of matrix theory.
CO3: design and develop programs using different logical statements viz. if, for, while, do until etc.
CO4: plot 2D and 3D graphs of data using mathematical computer programming.
CO5: increase capacity with the major programming paradigms, and the principles and techniques involved in design and implementation of mathematical programming languages.

Unit	Sub Unit	No. of Lect.(s)	Topics	Reference Chapter/ Additional Reading	Teaching Methodology to be used	Active Learning Activities	Evaluation Parameter
Unit 1: Basic elements of the language							
[08]	1.1	2	Creating real variables	Ch\#1,2 GNU Octave Beginner's guide Jesper Schmidt Hansen	Chalk \& Talk/ Presentation	For Slow Learner: Students must write answer of question(s) given by teacher after completion of each method and verified by teacher to resolve any query of students. For Active Learner: Student will solve exercise given in book after completion of Unit.	Unit Test-1 Assignment-1
	1.2	2	Elementary mathematical functions				
	1.3	2	Complex numbers				
	1.4	2	Integers, Floating point integers, Strings				

DEPARTMENT OF MATHEMATICS

Semester : VII

Integrated M.Sc. Mathematics
Subject: 060090107 GE1Principles of Scientific Computing

Unit 2: Matrices

[08]	2.1	2	Create a matrix of real values
	2.2	2	Empty matrix, Query matrices
	2.3	2	Element wise operations, Multiplication of two vectors
2.4	1	Conjugate transpose and nonconjugate transpose	
2.5	1	Comparing two real matrices	

Ch\# 2
GNU Octave Beginner's guide Jesper Schmidt Hansen

For Slow Learner:

Students must write answer of question(s) given by teacher after completion of each method and verified by teacher to resolve any query of students.

For Active Learner:

Student will solve exercise given in book after completion of Unit.

For Slow Learner:

Students must write answer of question(s) given by teacher after completion of each method and verified by teacher to resolve any query of students.

For Active Learner:

Student will solve exercise given in book after completion of Unit.

For Slow Learner:

Students must write answer of question(s) given by teacher after completion of each method and verified by teacher to resolve any query of students.

Unit Test-1 and 2
Assignment-2

Unit Test-2 Assignment-2

Unit 4: Functions \& plotting

[07]	4.1	1	Defining a function	Ch\# 3 GNU Octave Beginner's guide
Jesper Schmidt Hansen				

Chalk \& Talk/
Presentation

Internal Examination Assignment-2

DEPARTMENT OF MATHEMATICS

Semester : VII

Integrated M.Sc. Mathematics
Academic Year : 2019-20
Subject: 060090107 GE1Principles of Scientific Computing

	4.3	2	The return statement
	4.4	2	2D plot, 3D plot, Contour plots

For Active Learner:
Student will solve exercise given in book after completion of Unit.

Text book:

1. Jesper Schmidt Hansen, GNU Octave Beginner's guide, Packt publishing, 2011.

Reference books:

1. Amos Gilat, Matlab An introduction with applications, Wiley India,2004
2. Shoichiro Nakamura, GNU OCTAVE PRIMER FOR BEGINNER

Course Objectives and Course Outcomes Mapping:

- To give comprehensive knowledge of computer programming language: $\mathrm{CO} 1, \mathrm{CO}, \mathrm{CO} 4$.
- Its implementation in scientific problem solving techniques: C03,CO5.

Course Units and Course Outcomes Mapping:

Unit No.	Unit	Course Outcomes				
		C01	CO2	C03	C04	C05
$\mathbf{1}$	Basic elements of the language	\checkmark				\checkmark
2	Matrices		\checkmark			\checkmark
3	Looping and Branching			\checkmark		\checkmark
4	Functions \& plotting				\checkmark	\checkmark

DEPARTMENT OF MATHEMATICS

Integrated M.Sc. Mathematics
 Subject : 060090107 GE1Principles of Scientific Computing

Programme Outcomes (PO)

P01: Knowledge

Provides knowledge about the fundamentals of pure, applied and computing mathematics and its applications to students that creates the opportunities in industries and research centers.

PO2: Core Competence

Creates competency in science and mathematics to formulate, analyses and solve problem and/or also to pursue advanced study or research.

P03: Breadth

Trains students having good knowledge in unearth core of academia and industry by the roots of mathematics.

P04: Evaluation

Imparts in students to raise trial and error-based curiosity and problem-solving functionality with research based advanced tutorial for higher level decision makings tools.

Programme Outcomes and Course Outcomes Mapping:

Programme Outcomes	Course Outcomes					
	C01	C02	C03	C04	C05	
P01	\checkmark	\checkmark	\checkmark	\checkmark		
P02		\checkmark	\checkmark	\checkmark	\checkmark	
P03			\checkmark		\checkmark	
P04					\checkmark	

